정답먖풀이

I. 유리수와 소수

유리수와 소수

준비학습

 본문 10쪽(1)
(1) 0.7
(2) 0.26
(3) $\frac{19}{100}$
(4) $\frac{21}{50}$
(2) $\frac{3}{7}, 6.1,-3.14$

유리수의 소수 표현
본문 11~15쪽

11쪽
탐구(1) $\frac{2}{5}, 0.4, \frac{1}{3}, 0.333 \cdots$
탄루 (2) 0.4 는 소수점 아래의 0 이 아닌 숫자가 유 한 번 나타나고, $0.333 \cdots$ 은 소수점 아래의 0 이 아 닌 숫자가 무한 번 나타난다.

문제1
(1) 0.75 , 유한소수
(2) $0.1666 \cdots$, 무한소수
(3) 0.875 , 유한소수
(4) $0.444 \cdots$, 무한소수

문제 2
(1) $7,0 . \dot{7}$
(2) $872,3 . \dot{8} 7 \dot{2}$
(3) $31,0.53 \dot{1}$
(4) $2341,1 . \dot{2} 34 \dot{1}$

12쪽 담구 (1) $100,1000,10000$
탐구(2) $10^{2}, 10^{3}, 10^{4}$
문제 3 (2), (4)
14쪽
적용하기 $\frac{1}{8}, \frac{3}{10}, \frac{7}{14}, \frac{9}{16}, \frac{13}{20}, \frac{18}{25}, \frac{21}{28}$
문제 4 (1), (4)
확인 1
(1) $0 . \dot{5}$
(2) $-0.58 \dot{3}$
확인 $2(2),(3)$

사고력 2

2 순환소수의 분수 표현

 본문 16~18쪽16쪽 탐구(1) $10 x=3.333 \cdots$ 이므로 x 와 $10 x$ 의 소수점 아래의 부분이 같다.
탐구 (2) 3
문제1
(1) $\frac{7}{9}$
(2) $\frac{4}{33}$
(3) $\frac{463}{999}$
(4) $\frac{184}{99}$
(1) $\frac{71}{90}$
(2) $\frac{41}{45}$
(3) $\frac{131}{495}$
(4) $\frac{111}{110}$

문제 3 은별, 민서
확인 1
(1) $\frac{17}{33}$
(2) $\frac{43}{30}$
확인 $25.2,3 . \dot{2} \dot{8}$

(수학 역량 플러스

본문 19쪽
좔몽 $10 . \dot{7} 9 \dot{2}$

할몽 2 예 (6): 고 $0 . \dot{5} 6 \dot{8}=\frac{568}{999}$ 이다.

활뭉 3 예 유한소수로 나타낼 수 있는 분수 $\frac{1}{20}, \frac{8}{25}, \frac{21}{50}$ 과 순환소수로 나타낼 수 있는 분수 $\frac{25}{99}$ 를 이용하면 $\frac{1}{20}=0.05, \frac{8}{25}=0.32, \frac{21}{50}=0.42, \frac{25}{99}=0 . \dot{2} \dot{5}$ 이 므로 오선지에 음을 나타내면 다음과 같다.

중단원 마무리

본문 20~21쪽

(1) 유한소수, 무한소수
(2) 순환소수, 순환마디
(3) $2,5,2,5$
(4) 10 의 거듭제곱
(5) 순환소수
01
(ㄴ) $0 . \dot{3} 6 \dot{9}$
(ㄷ) $2 . \dot{5} \dot{2}$
이상에서 옳은 것은 (ㄱ), (ㄹ)이다.
$02 \frac{3}{14}=\frac{3}{2 \times 7}, \frac{9}{48}=\frac{3}{16}=\frac{3}{2^{4}}, \frac{12}{20}=\frac{3}{5}$, $\frac{8}{55}=\frac{8}{5 \times 11}, \frac{15}{54}=\frac{5}{18}=\frac{5}{2 \times 3^{2}}$

따라서 유한소수로 나타낼 수 있는 것은 $\frac{9}{48}, \frac{12}{20}$ 이다.
$03 \frac{5}{24} \times a=\frac{5}{2^{3} \times 3} \times a$ 가 유한소수가 되려면 a 는 3 의 배 수이어야 한다.
따라서 한 자리 자연수 a 는 $3,6,9$ 이다. - 50%

04 답 (4)
05 (1) 모든 순환소수는 유리수이다.
(2) 분모가 2 와 5 이외의 소인수를 갖는 기약분수는 유 한소수로 나타낼 수 없다.
(3) 순환하지 않는 무한소수는 유리수가 아니다.
(4) 정수가 아닌 모든 유리수는 유한소수 또는 순환소 수로 나타낼 수 있다.
(5)
$06 n$ 은 2 또는 5 의 배수이고, 3 이상의 자연수이어야 하 므로 구하는 자연수 n 은 $4,5,8$ 의 3 개이다.
$071.4 \dot{3}=\frac{129}{90}=\frac{43}{30}, 0 . \dot{6} \dot{3}=\frac{63}{99}=\frac{7}{11}$ 이다. $\quad \cdot 30 \%$ 이때 가희는 분자를 정확히 보았으므로 처음 기약분수 의 분자는 43 이고, 우진이는 분모를 정확히 보았으므 로 처음 기약분수의 분모는 11 이다. $\bullet 40 \%$ 따라서 처음의 기약분수는 $\frac{43}{11}$ 이고, 이것을 순환소수 로 나타내면 $3 . \dot{9} \dot{0}$ 이다.

- 30 \%

대단원 마무리 을ㅇ

 본문 22~23쪽
01 답 (2)

$02 \frac{8}{27}=0 . \dot{2} 9 \dot{6}$ 이고, $200=3 \times 66+2$ 이므로 소수점 아래 200 번째 자리의 숫자는 9 이다.
$03 \frac{1}{40}=\frac{1}{2^{3} \times 5}=\frac{5^{2}}{2^{3} \times 5^{3}}=\frac{25}{10^{3}}=0.025$ 따라서 $a=25, n=3$ 일 때, $a+n$ 의 값이 가장 작으므 로 구하는 수는 $\quad 25+3=\mathbf{2 8}$

04 답 (3)
05 조건 (가)에서 $\frac{A}{480}=\frac{A}{2^{5} \times 3 \times 5}$ 가 유한소수가 되려면 A 는 3 의 배수이어야 한다.

또 조건 (나)에서 A 는 13 의 배수이므로 A 는 13 과 3 의 공배수, 즉 39 의 배수가 되어야 한다.

조건 (다)에서 A 는 두 자리 자연수이므로 구하는 자연수 A 는 39,78 이다.
$06 \frac{x}{15}=\frac{x}{3 \times 5}, \frac{x}{56}=\frac{x}{2^{3} \times 7}$ 이므로 x 는 3 과 7 의 공배 수이어야 한다.
따라서 가장 작은 자연수 x 는 3 과 7 의 최소공배수이므 로 21이다.
$07 \frac{2}{5}=\frac{14}{35}, \frac{6}{7}=\frac{30}{35}$ 이므로 $\frac{2}{5}$ 와 $\frac{6}{7}$ 사이에 있는 분 모가 35 인 분수는 15 개이다. 이때 $35=5 \times 7$ 이므로 분 자는 7 의 배수가 아니어야 한다.
14 와 30 사이의 자연수 중 7 의 배수는 21,28 의 2 개이 므로 구하는 분수의 개수는

$$
15-2=13
$$

$09 \frac{a}{210}=\frac{a}{2 \times 3 \times 5 \times 7}$ 이므로 $\frac{a}{210}$ 를 소수로 나타내었 을 때 유한소수가 되려면 a 는 21 의 배수이어야 한다.
또 $\frac{a}{210}$ 를 기약분수로 나타내면 $\frac{3}{b}$ 이므로 a 는 63 의 배수가 되어야 한다.

- 60%
a 는 두 자리 자연수이므로 $\quad a=63$

$$
\frac{a}{210}=\frac{63}{210}=\frac{3}{10} \text { 이므로 } \quad b=10 \quad \bullet 40 \%
$$

$100 . \dot{2} \dot{7}$ 을 x 로 놓으면

$$
\begin{aligned}
& 100 x=27.272727 \cdots \\
&-2=0.272727 \cdots \\
& 99 x=27 \\
& x=\frac{27}{99}=\frac{3}{11}
\end{aligned}
$$

따라서 $a=11, b=3$ 이므로

$$
\frac{a}{b}=\frac{11}{3}=3.666 \cdots=3 . \dot{6}
$$

창의-웅합 프로젝트

본문 24쪽
과제 (1) 분수는 상대적인 양 또는 비를 나타내기에 편리하지 만 대소 비교가 어렵고 소수는 대소 비교가 편리하 지만 전체에 대한 비율을 정확히 나타내기에 적절하 지 않다.

과제 (2) 예 시•도에서 2008년 대비 인구 증가율이 가장 큰 지역은 제주 (15.7%))이며, 경기 (13.2%), 인천 (9.4%), 충남 (8.9%), 충북 (5.3%) 등의 순으 로 나타났다.

단항식의 계산

II. 식의 계산

준비학습
본문 28쪽
(1) (1) $2^{3} \times 5^{2}$
(2) $\frac{1}{2^{2} \times 3^{3}}$
(2) (1) $15 a$
(2) $2 x$

지수법칙

본문 29~33쪽
29쪽 탄무 © $2^{2} \times 2^{3}=2^{5}$
문제1
(1) 3^{7}
(2) 5^{12}
(3) a^{10}
(4) x^{8}

문제 2
(1) a^{13}
(2) $x^{12} y^{7}$

문제 3
(1) a^{16}
(2) x^{38}

31쪽
살구 ($* 10^{5} \div 10^{2}=10^{3}$
문제 4
(1) a^{4}
(2) $\frac{1}{x^{2}}$
(3) 1
문제 5
(1) $a^{12} b^{10}$
(2) $-x^{14} y^{7}$
(3) $\frac{x^{15}}{27 y^{3}}$

33쪽 오류찾기 은수, $\left(a^{3}\right)^{4} \div a^{6}=a^{12} \div a^{6}=a^{6}$
확인 1
(1) $a^{8} b^{9}$
(2) $\frac{1}{a^{4}}$
(3) $x^{12} y^{4}$
(4) $\frac{x^{6}}{y^{15}}$

확인 2
(1) $a^{20} b^{17}$
(2) x^{10}

사고력 예 $\left(a^{3}\right)^{4} \div a^{5}=a^{7}$

단항식의 곱셈과 나눗셈

 본문 34~36쪽34쪽
탈구 (1) $3 x \times 2 y$
탄구 (2) $6 x y$
문제 1
(1) $40 a^{5}$
(2) $-42 a^{5}$
(3) $-4 x^{3} y^{7}$
(4) $4 x^{11} y^{12}$

문제 2
(1) $2 a^{4} b^{3}$
(2) $-\frac{3 b}{a^{4}}$
(3) $x^{7} y^{4}$
(4) $-24 x^{9} y$

문제 3
(1) $-\frac{14 a^{9}}{b^{6}}$
(2) $4 x^{3} y^{7}$

확인 1 (1) $-10 a^{4} b^{9}$
(2) $x^{6} y^{9}$

확인 2
(1) $16 a^{5} b^{6}$
(2) $2 a^{8} b^{3}$
(3) $-3 x^{2} y$
(4) $-\frac{2}{x y^{3}}$

사고력 $a^{3} b^{2}$ 배

수학 역량 플러스
본문 37쪽
돨묭 1 밑이 같은 거듭제곱의 곱셈은 지수의 합을 이용하여 간단히 할 수 있다.
따라서 [그림 2], [그림 3]은 가로, 세로, 대각선의 합 이 일정한 마방진의 수를 지수로 하여 만든 배열이 므로 곱이 일정하다.
줄몽 2 가로, 세로, 대각선에 있는 단항식에서 x 의 지수의 합과 y 의 지수의 합이 각각 일정하므로 가로, 세로, 대각선에 있는 단항식의 곱은 일 정하다.

$x^{8} y^{4}$	$x y^{9}$	$x^{6} y^{2}$
$x^{3} y^{3}$	$x^{5} y^{5}$	$x^{7} y^{7}$
$x^{4} y^{8}$	$x^{9} y$	$x^{2} y^{6}$

중단원 마무리

본문 38~40쪽
(1) $m+n, m n, m-n, 1, n-m, m, m$
(2) 문자, 문자, 지수법칙, 곱셈, 분수
01
(2) a^{23}
(3) x^{6}
(4) $27 x^{6} y^{12}$
$02\left(\frac{2 x^{4}}{y^{a}}\right)^{b}=\frac{2^{b} x^{4 b}}{y^{a b}}=\frac{c x^{8}}{y^{12}}$ 이므로

$$
2^{b}=c, 4 b=8, a b=12
$$

따라서 $a=6, b=2, c=4$ 이므로 $\quad a+b+c=\mathbf{1 2}$

03
(1) $-25 a^{12} b^{9}$
(2) $\frac{3 \boldsymbol{b}^{10}}{a^{5}}$
(3) $-3 x^{5} y$
(4) $-6 x^{7} y^{6}$
$04\left(x^{3} y\right)^{2} \times\left(\frac{y}{x^{2}}\right)^{4}=x^{6} y^{2} \times \frac{y^{4}}{x^{8}}=\frac{y^{6}}{x^{2}}$ 이므로

$$
A=x^{11} y^{3} \times \frac{y^{6}}{x^{2}}=x^{9} \boldsymbol{y}^{9}
$$

05 (1) (직사각형의 넓이) $=3 a^{3} b \times 4 a b^{3}=12 a^{4} b^{4} \quad \bullet 30 \%$
(2) 직사각형의 넓이와 삼각형의 넓이가 같으므로 삼각 형의 높이를 \qquad 라고 하면

$$
\begin{aligned}
& 12 a^{4} b^{4}=\frac{1}{2} \times 6 a^{3} b^{2} \times \square \\
& 12 a^{4} b^{4}=3 a^{3} b^{2} \times \square \\
& \square=12 a^{4} b^{4} \div 3 a^{3} b^{2} \\
& \quad=12 a^{4} b^{4} \times \frac{1}{3 a^{3} b^{2}}=4 a b^{2}
\end{aligned}
$$

따라서 삼각형의 높이는 $4 a b^{2}$ 이다.

- 70 \%

06 (나) $\div\left(\frac{2}{3} x y\right)^{2}=\frac{3}{2} x^{3} y$ 이므로

$$
\begin{aligned}
& \text { (나) }=\frac{3}{2} x^{3} y \times\left(\frac{2}{3} x y\right)^{2} \\
&=\frac{3}{2} x^{3} y \times \frac{4}{9} x^{2} y^{2}=\frac{2}{3} x^{5} y^{3} \quad \bullet 50 \% \\
& \text { (가) } \times\left(-2 x^{4} y\right)=\text { (나) } \text { 이므로 } \\
& \text { (가) }=\text { (나) } \div\left(-2 x^{4} y\right) \\
&=\frac{2}{3} x^{5} y^{3} \times\left(-\frac{1}{2 x^{4} y}\right)=-\frac{1}{3} x y^{2} \quad \bullet 50 \%
\end{aligned}
$$

$07\left(-6 a^{3} b^{5}\right) \div \square \times 4 a b^{2}=2 a^{3} b^{4}$ 에서

$$
\begin{aligned}
& \left(-6 a^{3} b^{5}\right) \div \square=2 a^{3} b^{4} \div 4 a b^{2} \\
& \left(-6 a^{3} b^{5}\right) \div \square=\frac{1}{2} a^{2} b^{2} \\
& \square=\left(-6 a^{3} b^{5}\right) \div \frac{1}{2} a^{2} b^{2} \\
& =\left(-6 a^{3} b^{5}\right) \times \frac{2}{a^{2} b^{2}}=-\mathbf{1 2 a} \boldsymbol{b}^{\mathbf{3}}
\end{aligned}
$$

08 어떤 단항식을 \square 라고 하면

$$
4 x^{2} y^{3} \div \square=-2 x y^{2}
$$

$$
\square=\frac{4 x^{2} y^{3}}{-2 x y^{2}}=-2 x y \quad \bullet 50 \%
$$

따라서 바르게 계산하면

$$
4 x^{2} y^{3} \times(-2 x y)=-8 x^{3} y^{4} \quad \bullet 50 \%
$$

$09 A=2^{2}, B=3^{2}$ 이므로

$$
18^{4}=\left(2 \times 3^{2}\right)^{4}=2^{4} \times 3^{8}=\left(2^{2}\right)^{2} \times\left(3^{2}\right)^{4}=\boldsymbol{A}^{2} \boldsymbol{B}^{4}
$$

10 (1) $\left(2^{4} \times 2^{4} \times 2^{4}\right)\left(5^{7}+5^{7}+5^{7}\right)=2^{12} \times 3 \times 5^{7}$

$$
\begin{aligned}
& =2^{5} \times 3 \times(2 \times 5)^{7} \\
& =96 \times 10^{7}
\end{aligned}
$$

이므로 $\quad a=96, n=7$
(2) $\left(2^{4} \times 2^{4} \times 2^{4}\right)\left(5^{7}+5^{7}+5^{7}\right)=96 \times 10^{7}$ 이므로 주어 진 수는 9 자리 자연수이다.

11 (원기둥 모양의 그릇의 부피) $=\pi r^{2} \times 3 h=3 \pi r^{2} h$ 두 그릇의 부피가 같으므로 원뿔 모양의 그릇의 높이를 라고 하면

$$
\begin{aligned}
& 3 \pi r^{2} h=\frac{1}{3} \times \pi \times(2 r)^{2} \times \square \\
& 3 \pi r^{2} h=\frac{4}{3} \pi r^{2} \times \square \\
& \square=3 \pi r^{2} h \div \frac{4}{3} \pi r^{2}=3 \pi r^{2} h \times \frac{3}{4 \pi r^{2}}=\frac{9}{4} h
\end{aligned}
$$

따라서 구하는 높이는 $\frac{9}{4} h$ 이다.

2 다항식이 계산

준비학습

(1) (1) $6 a-2$
(2) $-15 a+6$
(3) $-2 x+3$
(4) $-3 x+1$
(2)
(1) $7 a$
(2) $4 a$
(3) $5 x+5$
(4) $-4 x-5$

탐구(1) 윤아: $3 a+2 b$, 성훈: $2 a+b$ 톰구 (2) $5 a+3 b$

문제 1
(1) $7 a-8 b$
(2) $-2 x-3 y+5$

문제 2
(1) $5 a^{2}+3 a-5$
(2) $3 x^{2}+6 x-13$

문제 3
(1) $-3 a-6 b$
(2) $2 x^{2}+x-5$

44쪽 추론하기 종현이가 생각한 두 자리 자연수를
$10 x+y$ 라고 하면 일의 자리의 숫자와 십의 자리의 숫자를 바꾼 수는 $10 y+x$ 이므로 두 수의 합은

$$
\begin{aligned}
(10 x+y)+(10 y+x) & =11 x+11 y \\
& =11(x+y)
\end{aligned}
$$

따라서 11 의 배수이다.
확인 1
(1) $-7 a+b$
(2) $-2 x+y-7$

확인 2
(1) $4 a^{2}+5 a-7$
(2) $5 x^{2}+x-5$

사고력 $3 a-3 b$

다항식의 곱셈과 나눗셈

본문 45~48쪽
45쪽 탐구 (1) $2 a(4 b+5)$ 탐구 (2) $8 a b+10 a$
문제1
(1) $15 a^{2}-5 a b$
(2) $-6 a^{2}+27 a b$
(3) $-4 x^{2}+28 x y-4 x$
(4) $-16 x^{2}+8 x y-24 x$

문제 2
(1) $10 a^{2}+6 a$
(2) $-2 x^{2}+27 x$

문제 3
(1) $3 a b-2 b$
(2) $5 x y-15$

문제 4
(1) $-15 a b$
(2) $24 x^{2}-20 x-5$

47 쪽 탐구 (1) $2 a+2 b$ 탐구 (2) $b=3 a$ 탐구 (3) $8 a$
문제 5
(1) $7 b-20$
(2) $3 b-5$

확인 1
(1) $-15 a^{2} b+5 a b^{2}$
(2) $8 x-16$
(3) $2 a^{2}-8 a+2$

확인 $2-y+1$
(수학 역량 플러스
본문 49쪽
갈몽 $\mid y-x, 2 y-x, x+y, 2 x+y, 4 x, 6 x+y, 10 x+y$ $y=8 x$
팔몽 ㄱ $8 x, 7 x, 15 x, 9 x, 10 x, 4 x, 14 x, 18 x, 64 x^{2}$, $49 x^{2}, 225 x^{2}, 81 x^{2}, 100 x^{2}, 16 x^{2}, 196 x^{2}, 324 x^{2}$ 정사각형의 넓이의 합: $1056 x^{2}$
할몽 3 처음 직사각형의 가로의 길이는 $32 x$, 세로의 길이는 $33 x$ 이므로 넓이는 $32 x \times 33 x=1056 x^{2}$ 이다. 즉 활동 2에서 구한 값과 같다.

중단원 마무리

본문 $50 \sim 52$ 쪽
(1) 동류항
(2) 분배법칙, 전개, 곱셈, 분수

01
(1) $-2 a+3 b$
(2) $-\mathbf{2 a}-\mathbf{1 0 b}-7$
(3) $-3 x^{2}-x-6$
(4) $3 x^{2}-10 x+5$
$02(a-7 b+4)-2(5 a-2 b-3)$
$=a-7 b+4-10 a+4 b+6$
$=-9 a-3 b+10$
따라서 a 의 계수는 -9 , 상수항은 10 이므로 구하는 합 은 $-9+10=1$

- 40 \%
$03 \frac{x-7 y}{3}+\frac{4 x-2 y}{5}=\frac{5 x-35 y+12 x-6 y}{15}$

$$
=\frac{17 x-41 y}{15}=\frac{17}{15} x-\frac{41}{15} y
$$

따라서 $a=\frac{17}{15}, b=-\frac{41}{15}$ 이므로 $\quad a+b=-\frac{8}{5}$
$04\left(2 x^{2}-x+5\right)+A=x^{2}-3 x+8$ 에서

$$
A=x^{2}-3 x+8-\left(2 x^{2}-x+5\right)
$$

$$
=x^{2}-3 x+8-2 x^{2}+x-5
$$

$$
=-x^{2}-2 x+3
$$

$$
\left(x^{2}-7 x+6\right)-B=-4 x+11 \text { 에서 }
$$

$$
B=\left(x^{2}-7 x+6\right)-(-4 x+11)
$$

$$
=x^{2}-7 x+6+4 x-11
$$

$$
=x^{2}-3 x-5
$$

05 어떤 다항식을 \square 라고 하면

$$
\begin{gathered}
\square+(-a+4 b-5)=6 a-2 b+1 \text { 이므로 } \\
\square=6 a-2 b+1-(-a+4 b-5) \\
=6 a-2 b+1+a-4 b+5 \\
=7 a-6 b+6
\end{gathered}
$$

따라서 바르게 계산하면

$$
\begin{aligned}
& 7 a-6 b+6-(-a+4 b-5) \\
= & 7 a-6 b+6+a-4 b+5 \\
= & 8 a-10 b+11
\end{aligned}
$$

$06-3 x(x+2 y+7)=-3 x^{2}-6 x y-21 x$ 이므로 x^{2} 의 계 수는 -3 이다.
$5 x(-x+6 y+4)=-5 x^{2}+30 x y+20 x$ 이므로 $x y$ 의 계수는 $\mathbf{3 0}$ 이다.
$07 \square \times\left(-\frac{2}{3} x^{2} y\right)=6 x^{3} y-4 x^{2} y^{2}$ 에서

$$
\begin{aligned}
\square & =\left(6 x^{3} y-4 x^{2} y^{2}\right) \div\left(-\frac{2}{3} x^{2} y\right) \\
& =\left(6 x^{3} y-4 x^{2} y^{2}\right) \times\left(-\frac{3}{2 x^{2} y}\right) \\
& =-9 x+6 y
\end{aligned}
$$

08

$$
\begin{aligned}
& -x(5 x-9 y)+\left(2 x^{2} y-10 x y\right) \div \frac{2}{3} x \\
= & -5 x^{2}+9 x y+\left(2 x^{2} y-10 x y\right) \times \frac{3}{2 x} \\
= & -5 x^{2}+9 x y+3 x y-15 y \\
= & -5 x^{2}+\mathbf{1 2 x y}-\mathbf{1 5 y}
\end{aligned}
$$

$097 x^{2}-6 x y-3$ 의 y 에 $-2 x+4$ 를 대입하면

$$
\begin{aligned}
7 x^{2}-6 x y-3 & =7 x^{2}-6 x(-2 x+4)-3 \\
& =7 x^{2}+12 x^{2}-24 x-3 \\
& =\mathbf{1 9} \boldsymbol{x}^{2} \mathbf{-} \mathbf{2 4 x} \boldsymbol{x}
\end{aligned}
$$

$105 a-[2 b-a-\{3 a-(\square+4 b)\}]$
$=5 a-\{2 b-a-(3 a-\square-4 b)\}$
$=5 a-(2 b-a-3 a+\square+4 b)$
$=5 a-(-4 a+6 b+$ \qquad
$=5 a+4 a-6 b-\square$
$=9 a-6 b-$

- 50 \%

이므로 $\quad 9 a-6 b-\square=10 a-8 b$

$$
\square=9 a-6 b-(10 a-8 b)
$$

$$
=-a+2 b
$$

11

$3 a^{2}+2$ (ㄱ) $a^{2}-a-2$ (ㄷ) $2 a^{2}-5 a$ (ㄴ) $a^{2}+3 a+1$		
$\left(3 a^{2}+2\right)+\square(ㄱ)=a^{2}-a-2$ 이므로		

$$
\text { (ᄀ) }=a^{2}-a-2-\left(3 a^{2}+2\right)
$$

$$
=a^{2}-a-2-3 a^{2}-2=-\mathbf{2} a^{2}-\boldsymbol{a}-\mathbf{4}
$$

$\left(3 a^{2}+2\right)-$ (ㄷ) $=a^{2}+3 a+1$ 이므로
(ㄷ) $=3 a^{2}+2-\left(a^{2}+3 a+1\right)$
$=3 a^{2}+2-a^{2}-3 a-1=2 a^{2}-3 a+1$
(ㄷ) $+\left(2 a^{2}-5 a\right)=$ (ㄴ) 이므로
(ᄂ) $=2 a^{2}-3 a+1+2 a^{2}-5 a=4 a^{2}-8 a+\mathbf{1}$
12 큰 직육면체의 높이를 h_{1} 이라고 하면

$$
\begin{aligned}
& 3 a \times 1 \times h_{1}=9 a^{2}+6 a b \\
& h_{1}=\frac{9 a^{2}+6 a b}{3 a}=3 a+2 b
\end{aligned}
$$

작은 직육면체의 높이를 h_{2} 라고 하면

$$
2 a \times 1 \times h_{2}=4 a^{2}-2 a b
$$

$$
h_{2}=\frac{4 a^{2}-2 a b}{2 a}=2 a-b
$$

$h=h_{1}+h_{2}$ 이므로 전체 높이는

$$
h=(3 a+2 b)+(2 a-b)=\mathbf{5} \boldsymbol{a}+\boldsymbol{b}
$$

대단원 마무리 울(0)

본문 53~55쪽

01 답 (2), (4)
02
(1) $a^{3} \times a^{4}=a^{7}$
(2) $\left(a^{2}\right)^{3}=a^{6}$
(3) $a^{10} \div a^{5}=a^{5}$
(4) $(2 a)^{3}=8 a^{3}$
(5) $\left(a^{3}\right)^{3} \times a^{2} \div a^{9}=a^{2}$

따라서 \square 안에 들어갈 수가 가장 큰 것은 (3)이다.
$03 \quad 30 \times 40 \times 50 \times 60$
$=(2 \times 3 \times 5) \times\left(2^{3} \times 5\right) \times\left(2 \times 5^{2}\right) \times\left(2^{2} \times 3 \times 5\right)$
$=2^{7} \times 3^{2} \times 5^{5}$
따라서 $x=7, y=2, z=5$ 이므로

$$
x+y+z=\mathbf{1 4}
$$

$04 \quad\left(6 a^{2} b\right)^{2} \times\left(a b^{4}\right)^{3} \div 9 a^{8} b^{7}=36 a^{4} b^{2} \times a^{3} b^{12} \times \frac{1}{9 a^{8} b^{7}}$

$$
=\frac{4 b^{7}}{a}
$$

$05 \quad \frac{1}{3} \times 4 a b \times a^{3} b^{6} \times\left(3 a^{5} b\right)^{2}$
$=\frac{1}{3} \times 4 a b \times a^{3} b^{6} \times 9 a^{10} b^{2}$
$=12 a^{14} b^{9}$
06 어떤 식을 \qquad 라고 하면

$$
\begin{aligned}
& \left(-x^{2}+5 x-4\right)-\square=x^{2}-5 \\
& \square=\left(-x^{2}+5 x-4\right)-\left(x^{2}-5\right) \\
& \quad=-x^{2}+5 x-4-x^{2}+5 \\
& =-2 x^{2}+5 x+1
\end{aligned}
$$

$073 y-[2 x-\{5(x-y)+4 y\}-6]$
$=3 y-\{2 x-(5 x-y)-6\}$
$=3 y-(-3 x+y-6)$
$=3 x+2 y+6$
08 답 (3), (5)

09

$$
\begin{aligned}
& \frac{-12 x^{2}+9 x y}{-3 x}-\frac{8 y^{2}-4 x y}{2 y} \\
= & 4 x-3 y-4 y+2 x \\
= & 6 x-7 y
\end{aligned}
$$

따라서 모든 항의 계수의 합은

$$
6+(-7)=-\mathbf{1}
$$

$102 x(6 x-5)-9 x \times \square=-15 x^{2}+8 x$ 에서

$$
\begin{aligned}
12 x^{2}-10 x-9 x \times \square & =-15 x^{2}+8 x \\
\square & =\left\{-15 x^{2}+8 x-\left(12 x^{2}-10 x\right)\right\} \div(-9 x) \\
& =\frac{-27 x^{2}+18 x}{-9 x}=\mathbf{3 x}-\mathbf{2}
\end{aligned}
$$

11 (직사각형 ABCD 의 넓이) $=2 x \times 3 y=6 x y$
$\overline{\mathrm{AE}}=3 y-4$ 이므로 $\triangle \mathrm{AED}$ 의 넓이는

$$
\frac{1}{2} \times 2 x \times(3 y-4)=3 x y-4 x
$$

$\overline{\mathrm{FC}}=2 x-6$ 이므로 $\triangle \mathrm{DFC}$ 의 넓이는

$$
\frac{1}{2} \times(2 x-6) \times 3 y=3 x y-9 y
$$

따라서 사각형 EBFD 의 넓이는

$$
6 x y-\{(3 x y-4 x)+(3 x y-9 y)\}
$$

$$
=4 x+9 y
$$

$12 A=2(x-3 y)-5(4 x-y)$

$$
=-18 x-y
$$

$B=\frac{8 x-6 y}{2}-\frac{9 x-12 y}{3}$
$=4 x-3 y-3 x+4 y$

$$
=x+y
$$

이므로

$$
\begin{aligned}
A+2 B & =-18 x-y+2(x+y) \\
& =-\mathbf{1 6 x} \boldsymbol{x} \boldsymbol{y}
\end{aligned}
$$

$13 \quad 3^{10} \times 9^{20}=3^{10} \times\left(3^{2}\right)^{20}=3^{10} \times 3^{40}=3^{50} \quad \bullet 40 \%$ $3^{1}=3,3^{2}=9,3^{3}=27,3^{4}=81,3^{5}=243, \cdots$ 이므로 3 의 거듭제곱의 일의 자리의 숫자는 $3,9,7,1$ 의 순서 대로 반복된다.

- 30 \%
$50=4 \times 12+2$ 이므로 3^{50} 의 일의 자리의 숫자는 3^{2} 의 일의 자리의 숫자와 같으므로 9 이다.
- 30 \%
$14 \quad\left(-2 x^{3} y\right)^{A} \div x^{B} y \times 6 x y^{5}$
$=(-2)^{A} x^{3 A} y^{A} \times \frac{1}{x^{B} y} \times 6 x y^{5}$
$=(-2)^{A} \times 6 \times x^{3 A-B+1} y^{A+4}$
$=C x^{4} y^{6}$
이므로

$$
(-2)^{A} \times 6=C, 3 A-B+1=4, A+4=6
$$

따라서 $A=2, B=3, C=24$ 이므로

$$
A+B+C=29
$$

- 30%
$152\left(x^{2}-4 x-3\right)-\left(a x^{2}-2 x+5\right)$
$=2 x^{2}-8 x-6-a x^{2}+2 x-5$
$=(2-a) x^{2}-6 x-11$
- 70 \%

이므로 x^{2} 의 계수와 상수항의 합은

$$
(2-a)+(-11)=-a-9
$$

따라서 $-a-9=1$ 이므로 $\quad a=-10 \quad \bullet 30 \%$
$16\left(-a b+b^{2}\right) \div\left(-\frac{1}{5} b\right)-\left(12 a^{2} b-8 a b^{2}\right) \div 4 a b$
$=\left(-a b+b^{2}\right) \times\left(-\frac{5}{b}\right)-\left(12 a^{2} b-8 a b^{2}\right) \times \frac{1}{4 a b}$
$=5 a-5 b-3 a+2 b$
$=2 a-3 b$

- 70 \%
$a=\frac{7}{2}, b=-\frac{1}{3}$ 을 $2 a-3 b$ 에 대입하면

$$
2 \times \frac{7}{2}-3 \times\left(-\frac{1}{3}\right)=8 \quad \cdot 30 \%
$$

창의•ㅇㅇㅇ합 프로젝트

본문 56쪽
과제 (1) (2), $x x, x(2)$
과제 (ㄹ) 유 브라마굽타(Brahmagupta, 598~665?): 이 차방정식을 다룸
카르다노(Cardano, G., 1501~1576): 삼차방정 식의 근의 공식을 연구함

III. 부등식과 방정식

일차부등식

준비학습

본문 60 쪽
(1) (1) $x \geq 3$
(2) $x<5$
(3) $x>6$
(4) $2<x \leq 7$
(2) $(600 x+800 y)$ 원

1 부등식
본문 61~66쪽
61쪽 톰구 * $a \leq 200$
문제1
(1) $5(x-2)>10$
(2) $750 x \leq 15000$
(3) $1300 x+2500<10000$

문제 2
(1) 2,3
(2) 1,2

62쪽 찾아보기 예 청소년 보호법에 의하면 ‘청소년’은 만 19 세 미만인 사람을 말한다.
(9) 청소년의 나이를 만 x 세라고 할 때, 이를 부등식 으로 나타내면 $x<19$ 이다.

63쪽 탐구(1) 위에서부터 $<,<,<,<,<,>,<,>$ 탕구 (2) 부등식 $10<20$ 의 양변에 -5 를 곱하거나 양변을 -5 로 나누는 경우

문제 3
(1) $<$
(2) $<$
(3) $<$
(4) $<$

문제 4
$(1)<$
$(2)<$
(3) $<$
(4) $<$

문제 5
(1) $>$
(2) $>$
(3) $>$
(4) $>$

문제 6
$(1) \geq$
(2) \geq
(3) \leq
$(4) \leq$

문제 7
(1) \geq
(2) $<$

66쪽 설명하기 예 등식 또는 부등식의 양변에 같은 수를 더하거나 양변에서 같은 수를 빼도 등식 또는 부등 식이 성립한다. 또 양변에 같은 양수를 곱하거나 양 변을 같은 양수로 나누어도 등식 또는 부등식이 성 립한다. 한편 등식의 양변에 같은 음수를 곱하거나 양변을 같은 음수로 나누어도 등식이 성립하지만 부 등식의 양변에 같은 음수를 곱하거나 양변을 같은 음수로 나누면 부등호의 방향이 바뀐다.
확인 1 (1), (4)
확인 2
(1) $>$
(2) $>$
$(3) \leq$

일차부등식

본문 67~72쪽
67쪽
달구 (1) $2 x+7$
탐구 (2) 1
문제 1
(1), (3)

문제 2
(1) $x \geq 3$
(2) $x>-2$

(3) $x \leq-4$

(4) $x<2$

문제 3
(1) $x \leq-3$
(2) $x \leq \frac{1}{2}$

문제 4
(1) $x<4$
(2) $x \geq 3$

문제 5
(1) $x<10$
(2) $x \leq 3$

70쪽
표현하기 예 (1) $3 x+4>7$ (2) $\frac{1}{2} x+\frac{1}{3}>\frac{5}{6}$
문제 6
176 개
문제 $7 \quad 450 \mathrm{~m}$
확인 1
(1) $x \geq-4$ (2) $x<1$
(3) $x \leq 12$
(4) $x>\frac{1}{4}$

술뭉 $1 \mathrm{~A}, x>2$
푤뭉 2 첫 번째 측정에서 $\mathrm{A}+\mathrm{B}=\mathrm{C}+\mathrm{D}$ 의 결과가 나온 경 우 E 가 진짜 열쇠라는 것을 알 수 있다.
첫 번째 측정에서 $\mathrm{A}+\mathrm{B}<\mathrm{C}+\mathrm{D}$ 의 결과가 나온 경 우 두 번째 측정에서 C 와 D 를 비교했을 때 $\mathrm{C}=\mathrm{D}$ 이 면 A 와 B 를 비교하여 진짜 열쇠를 찾을 수 있다. 만약 $\mathrm{C} \neq \mathrm{D}$ 라면 활동 과 같은 방법으로 진짜 열쇠를 찾을 수 있다. 따라서 많아야 3 번 측정하면 진짜 열 쇠를 찾을 수 있고, x 의 값의 범위도 구할 수 있다.

중단원 마무리

본문 74~76쪽
(1) 부등식
(2) $<,<,>$
(3) 일차부등식

01
(1) $a-20 \geq 7$
(2) $x+14 \leq 2 x$
(3) $430-\boldsymbol{x}>\mathbf{2 0 0}$

02
(1) $<$
(2) \leq
(3) $<$
(4) \geq

03 주어진 수직선에서 $x \leq-1$
(ㄱ) $7+4 x \geq 3$ 에서 $\quad 4 x \geq-4, \quad x \geq-1$
(ㄴ) $2 x+7 \leq-5 x$ 에서 $\quad 7 x \leq-7, \quad x \leq-1$
(ㄷ) $12 x-5 \leq 9 x-2$ 에서 $\quad 3 x \leq 3, \quad x \leq 1$
(ㄹ) $-2 x+13 \geq 3(x+6)$ 에서 $\quad-2 x+13 \geq 3 x+18$

$$
-5 x \geq 5, \quad x \leq-1
$$

이상에서 해가 $x \leq-1$ 인 것은 (ㄴ), (ㄹ)이다.
04 (1) 양변에 10 을 곱하면 $2 x+16>10+4 x$

$$
-2 x>-6, \quad x<3
$$

(2) 양변에 12 를 곱하면 $\quad 3 x-36 \leq 10 x+6$

$$
-7 x \leq 42, \quad x \geq-6
$$

$054 x+a<2 x+8$ 에서

$$
2 x<8-a, \quad x<\frac{8-a}{2}
$$

이 부등식의 해가 $x<7$ 이므로 $\quad \frac{8-a}{2}=7 \quad \bullet 30 \%$

$$
8-a=14, \quad a=-6 \quad \bullet 30 \%
$$

06 양변에 10 을 곱하면 $9 x-2 \geq 15 x-20$

$$
-6 x \geq-18, \quad x \leq 3
$$

따라서 주어진 부등식을 만족시키는 자연수 x 의 값은 $1,2,3$ 이므로 구하는 합은

$$
1+2+3=6
$$

07 다섯 번째 시험에서 x 점을 받는다고 하면

$$
\begin{aligned}
& \frac{72+75+84+79+x}{5} \geq 80 \\
& 310+x \geq 400, \quad x \geq 90
\end{aligned}
$$

따라서 다섯 번째 시험에서 90 점 이상을 받아야 한다.
08 아랫변의 길이를 $x \mathrm{~cm}$ 라고 하면

$$
\begin{aligned}
& \frac{1}{2} \times(6+x) \times 8 \geq 52 \\
& 24+4 x \geq 52, \quad 4 x \geq 28, \quad x \geq 7
\end{aligned}
$$

따라서 아랫변의 길이는 $\mathbf{7 c m}$ 이상이어야 한다.
$09 a b<0$ 이고 $a>b$ 이므로 $\quad a>0, b<0$
이때 $a c>0$ 이므로 $\quad c>0$
$b<0$ 이므로 $a b>b c$ 의 양변을 b 로 나누면 $\quad a<c$ 따라서 구하는 대소 관계는 $\quad \boldsymbol{b}<\boldsymbol{a}<\boldsymbol{c}$
$10 \quad \frac{x}{3}-\frac{x-3}{2} \geq \frac{a}{6}$ 에서 $\quad 2 x-3 x+9 \geq a$

$$
-x \geq a-9, \quad x \leq 9-a
$$

이 부등식을 만족시키는 양수 x 의 값이 존재하지 않으 려면 오른쪽 그림에서

$$
9-a \leq 0, \quad a \geq 9
$$

11 놀이공원에 x 명이 간다고 하면

$$
\begin{aligned}
& 15000 x \times 0.8<15000 \times 4 \times 0.5+15000(x-4) \\
& 12000 x<30000+15000 x-60000 \\
& -3000 x<-30000, \quad x>10
\end{aligned}
$$

따라서 11 명 이상부터 통신사 제휴 카드로 할인 받는 것이 더 유리하다.

2 연립일차방정식

준비학습

본문 77쪽
1
(1) $x=3$
(2) $x=-4$
(2) 22,24

연립일차방정식
본문 $78 \sim 81$ 폭
78쪽 담구 * $2 x+3 y=35$
문제1 (1), (4)
문제 ${ }^{2}$
(1) $3 x+4 y=34$
(2) $4 x+9 y=1700$

문제 3
(1), (4)

문제4 (1) 순서쌍 (x, y) 로 나타내면

$$
(1,3),(2,2),(3,1)
$$

(2) 순서쌍 (x, y) 로 나타내면

$$
(8,1),(5,2),(2,3)
$$

79쪽 표현하기 에 1200 원짜리 도넛 x 개와 800 원짜리 우 유 y 개를 합한 금액은 8800 원이다.
$1200 x+800 y=8800$
80쪽
탐무 (1)
$x+y=5$
통루 (2) $x+2 y=7$

문제 5
$x=4, y=2$
81쪽 적용하기 (1)

(2)
(1) $\left\{\begin{array}{l}2 x-y=3 \\ 5 x+2 y=3\end{array}\right.$
(2) $\left\{\begin{array}{l}5 x+2 y=3 \\ 3 x+y=1\end{array}\right.$

확인 1 (1) 순서쌍 (x, y) 로 나타내면

$$
(1,17),(2,12),(3,7),(4,2)
$$

(2) 순서쌍 (x, y) 로 나타내면
$(4,1)$
확인 $2(2),(3)$

공학 도구 활용
본문 82쪽

할몽 | (1)

따라서 주어진 연립방정식의 해는
(2)

$$
x=-1, y=6
$$

따라서 주어진 연립방정식의 해는

$$
x=3, y=-2
$$

연립방정식의 풀이

83쪽 탐구 (1) $3 x+2 y=2800, x+2 y=2000$ 탐구 (2) 1

문제 1
(1) $x=1, y=-3$
(2) $x=2, y=3$
(1) $x=3, y=1$
(2) $x=-3, y=-4$
(3) $x=-2, y=2$
(4) $x=2, y=1$

문제 2

85쪽 탐무(1) $y=x+210, x+y=2476$
담구 (2) 예 $x+(x+210)=2476$
문제 3
(1) $x=1, y=4$
(2) $x=-1, y=2$
(3) $x=-2, y=-11$
(4) $x=-3, y=-2$

문제 4
(1) $x=2, y=1$
(2) $x=4, y=-1$

87쪽 토론하기 예 (1)은 y 의 계수의 절댓값이 같으므로 정민이의 방법으로 푸는 것이 편리하고, (2)는 x 와 y 의 계수 중 절댓값이 같은 것이 없으므로 하윤이의 방법으로 푸는 것이 편리하다.
문제 5
(1) $x=2, y=4$
(2) $x=-2, y=5$
문제 6
(1) 해는 없다.
(2) 해는 무수히 많다.

88쪽 적용하기 (1) 예 $\left\{\begin{array}{l}3 x+2 y=5 x+6 y \\ 3 x+2 y=-4\end{array},\left\{\begin{array}{l}3 x+2 y=-4 \\ 5 x+6 y=-4\end{array}\right.\right.$
(2) 두 연립방정식의 해는 $x=-2, y=1$ 로 같다.

문제 7 민서의 나이: 11 살, 아버지의 나이: 43 살

문제 8
49 문제 9 분속 100 m 로 걸은 거리: 2 km , 분속 80 m 로 걸은 거리: 4 km

확인 1 (1) $x=3, y=2$
(2) $x=\frac{1}{2}, y=\frac{1}{10}$
(3) 해는 무수히 많다.
(수학 역량 플러스
본문 91쪽

살묭 1 예

중단원 마무리

본문 92~94쪽

(1) 일차방정식
(2) 연립방정식
$01 x=-1, y=3$ 을 주어진 일차방정식에 대입하면
(3) $3 \times(-1)+2 \times 3=3$
(4) $-2 \times(-1)+3 \times 3=11$

따라서 $x=-1, y=3$ 을 해로 갖는 일차방정식은 (3), (4)이다.
$02 x=a, y=-1$ 을 $x-2 y=7$ 에 대입하면

$$
a+2=7, \quad a=5
$$

$x=3, y=b$ 를 $x-2 y=7$ 에 대입하면

$$
3-2 b=7, \quad-2 b=4, \quad \boldsymbol{b}=-\mathbf{2}
$$

$03 x=3, y=2$ 를 $x+y=a$ 에 대입하면

$$
3+2=a, \quad a=5
$$

$x=3, y=2$ 를 $2 x+b y=10$ 에 대입하면

$$
\begin{aligned}
& 6+2 b=10, \quad 2 b=4, \quad b=2 \\
& a+b=7
\end{aligned}
$$

04
(1) $x=3, y=-2$
(2) $\boldsymbol{x}=-3, y=1$
(3) $x=-3, y=1$
(4) $x=3, y=2$
$05 x$ 의 값이 y 의 값의 2 배이므로 $\quad x=2 y$

- 20 \% $x=2 y$ 를 주어진 연립방정식에 대입하면

$$
\left\{\begin{array} { l }
{ 2 (2 y) - y = a } \tag{7}\\
{ 2 y + 2 y = 7 - a }
\end{array} , \text { 즉 } \left\{\begin{array}{l}
3 y=a \\
4 y=7-a
\end{array}\right.\right.
$$

(ㄱ), (ㄴ)을 변끼리 더하면 $\quad 7 y=7, \quad y=1 \quad \bullet 50 \%$ $y=1$ 을 (ㄱ)에 대입하면 $\quad a=3$ - 30 \%

06
$\left\{\begin{array}{l}4 x+a y=3 \\ -2 x+3 y=4\end{array}\right.$
(ㄴ)의 양변에 -2 를 곱하면

$$
\begin{equation*}
4 x-6 y=-8 \tag{ㄷ}
\end{equation*}
$$

주어진 연립방정식의 해가 없으려면 (ㄱ)과 (ㄷ)의 좌변은 같고 우변은 달라야 하므로 $\quad a=-6$

07
(1) $\left\{\begin{array}{l}x+9 y=72 \\ 9 x+y=88\end{array}\right.$ $\ldots . .$. (ㄱ)
$\ldots . .$. (ㄴ) \quad \%
(2) (ㄱ)에서 x 를 y 의 식으로 나타내면

$$
\begin{equation*}
x=-9 y+72 \tag{ㄷ}
\end{equation*}
$$

(ㄷ)을 (ㄴ)에 대입하면 $\quad 9(-9 y+72)+y=88$

$$
-80 y=-560, \quad y=7
$$

$y=7$ 을 (ㄷ)에 대입하면

$$
x=-9 \times 7+72, \quad x=9 \quad \bullet 50 \%
$$

따라서 구미호는 9 마리, 붕조는 7 마리이다. - 20%

08 강민이가 이긴 횟수를 x, 진 횟수를 y 라고 하면 지수가 이긴 횟수는 y, 진 횟수는 x 이므로

$$
\left\{\begin{array}{l}
3 x-2 y=8 \tag{ㄱ}\\
-2 x+3 y=3
\end{array}\right.
$$

(ㄱ)의 양변에 2 를 곱하고 (ㄴ)의 양변에 3 을 곱한 후 변끼 리 더하면 $\quad 5 y=25, \quad y=5$
$y=5$ 를 (ㄱ)에 대입하면 $\quad 3 x-10=8$

$$
3 x=18, \quad x=6
$$

따라서 강민이가 이긴 횟수는 6 이다.
09 연립방정식 $\left\{\begin{array}{l}b x+a y=-5 \\ a x+b y=7\end{array}\right.$ 의 해가 $x=3, y=-1$ 이므
로 $\quad\left\{\begin{array}{l}3 b-a=-5 \\ 3 a-b=7\end{array}\right.$
(ㄱ)의 양변에 3 을 곱한 후 (ㄴ)과 변끼리 더하면

$$
8 b=-8, \quad b=-1
$$

$b=-1$ 을 (ㄱ)에 대입하면 $\quad-3-a=-5$

$$
\begin{equation*}
-a=-2, \quad a=2 \tag{ㄷ}
\end{equation*}
$$

처음의 연립방정식은 $\quad\left\{\begin{array}{l}2 x-y=-5 \\ -x+2 y=7\end{array}\right.$
(ㄹ)의 양변에 2 를 곱한 후 (ㄷ)과 변끼리 더하면

$$
3 y=9, \quad y=3
$$

$y=3$ 을 (ㄷ)에 대입하면 $\quad 2 x-3=-5$

$$
2 x=-2, \quad x=-1
$$

따라서 처음의 연립방정식의 해는 $\quad x=-1, y=3$
$10\left\{\begin{array}{l}5 x+2 y=1 \\ 2 x+3 y=-4\end{array}\right.$
(ㄱ)의 양변에 3 을 곱하고 (ㄴ)의 양변에 2 를 곱하면

$$
\left\{\begin{array}{l}
15 x+6 y=3 \tag{ᄃ}\\
4 x+6 y=-8
\end{array}\right.
$$

(ㄷ)에서 (ㄹ)을 변끼리 빼면 $\quad 11 x=11, \quad x=1$
$x=1$ 을 (ㄱ)에 대입하면 $\quad 5+2 y=1$

$$
2 y=-4, \quad y=-2 \quad \bullet 40 \%
$$

$x=1, y=-2$ 를 $a x+2 y=6$ 에 대입하면

$$
a-4=6, \quad a=10
$$

$x=1, y=-2$ 를 $2 x+2 y=b$ 에 대입하면

$$
\begin{array}{ll}
2-4=b, \quad b=-2 & \bullet 40 \% \\
a-b=12 & \\
\bullet 20 \%
\end{array}
$$

11 오디션에 참가한 전공자 수를 x, 비전공자 수를 y 라고 하면 $\left\{\begin{array}{l}x+y=30 \\ 40 x+25 y=35 \times 30\end{array}\right.$

$$
\text { 즉 }\left\{\begin{array}{l}
x+y=30 \tag{ㄱ}\\
8 x+5 y=210
\end{array}\right.
$$

(ㄱ)의 양변에 5 를 곱하면

$$
\begin{array}{lcc}
\quad 5 x+5 y=150 & \cdots \cdots \cdot(ㄷ) \\
\text { (ㄴ)에서 (ㄷ)을 변끼리 빼면 } & 3 x=60, & x=20 \\
x=20 \text { 을 (ㄱ)에 대입하면 } & 20+y=30, & y=10
\end{array}
$$ 따라서 이 오디션에 참가한 비전공자는 모두 $\mathbf{1 0}$ 명이다.

대단원 마무리 울(0)

01 답 (2), (5) 02 답 (2), (4) 03 답 (5)
$04-5(x+2)+7 x>a$ 에서

$$
2 x>a+10, \quad x>\frac{a+10}{2}
$$

주어진 수직선에서 $x>2$ 이므로

$$
\frac{a+10}{2}=2, \quad a+10=4, \quad a=-6
$$

05 한 번에 x 대의 거문고를 운반한다고 하면

$$
\begin{aligned}
& 70+30 x \leq 500, \quad 30 x \leq 430 \\
& x \leq \frac{43}{3}=14.333 \cdots
\end{aligned}
$$

그런데 x 는 자연수이므로 한 번에 최대 $\mathbf{1 4}$ 대의 거문고 를 운반할 수 있다.

06 물건의 정가를 x 원이라고 하면

$$
\begin{aligned}
& \left(1-\frac{20}{100}\right) \times x-10000 \geq 10000 \times \frac{10}{100} \\
& 0.8 x \geq 11000, \quad 8 x \geq 110000 \\
& x \geq 13750
\end{aligned}
$$

따라서 물건의 정가를 $\mathbf{1 3 7 5 0}$ 원 이상으로 정해야 한다.
07 주어진 방정식의 해를 순서쌍 (x, y) 로 나타내면
$(1,3),(6,1)$
따라서 구하는 해의 개수는 2 이다.
08 연립방정식 $\left\{\begin{array}{l}x-5 y=12 \\ 3 x+10 y=11\end{array}\right.$ 을 풀면 $\quad x=7, y=-1$ $x=7, y=-1$ 을 $a x+(a+5) y=7$ 에 대입하면

$$
7 a-(a+5)=7, \quad 6 a=12, \quad a=2
$$

$09\left\{\begin{array}{l}\frac{y-x}{5}+0.3 x=-\frac{1}{5} \\ \frac{x+2 y}{10}-\frac{6}{5} y=2.2\end{array}\right.$, 즉 $\left\{\begin{array}{l}x+2 y=-2 \\ x-10 y=22\end{array}\right.$
연립방정식을 풀면 $\quad x=2, y=-2$

10 (1), (5) 해는 무수히 많다.
(2), (3), (4) 해는 없다.

합 (1 , 5

11 물통에 물을 가득 채웠을 때의 물의 양을 1 로 놓고, A , B 호스로 1 분 동안 채울 수 있는 물의 양을 각각 x, y 라고 하면

$$
\left\{\begin{array} { l }
{ 1 0 x + 1 5 y = 1 } \\
{ 1 2 (x + y) = 1 }
\end{array} , \text { 즉 } \left\{\begin{array}{l}
10 x+15 y=1 \\
12 x+12 y=1
\end{array}\right.\right.
$$

연립방정식을 풀면 $\quad x=\frac{1}{20}, y=\frac{1}{30}$
따라서 A 호스로 1 분 동안 채울 수 있는 물의 양은 전체 물의 양의 $\frac{1}{20}$ 이므로 구하는 시간은 20 분이다.

12 준호네 학교의 작년 2 학년 남학생 수를 x, 여학생 수를 y 라고 하면

$$
\left\{\begin{array} { l }
{ x + y = 3 3 0 } \\
{ \frac { 2 0 } { 1 0 0 } x - \frac { 1 0 } { 1 0 0 } y = 1 2 }
\end{array} , \text { 즉 } \left\{\begin{array}{l}
x+y=330 \\
2 x-y=120
\end{array}\right.\right.
$$

연립방정식을 풀면 $\quad x=150, y=180$
따라서 올해의 여학생 수는

$$
180 \times\left(1-\frac{10}{100}\right)=\mathbf{1 6 2}
$$

$132(x+a)+5 x>9+4 x$ 에서

$$
2 x+2 a+5 x>9+4 x
$$

$$
3 x>9-2 a, \quad x>\frac{9-2 a}{3} \quad \bullet 40 \%
$$

$\frac{x+7}{4}-\frac{5 x-2}{3}<2-x$ 에서
$3 x+21-20 x+8<24-12 x$
$-5 x<-5, \quad x>1 \quad \bullet 40 \%$
따라서 $\frac{9-2 a}{3}=1$ 이므로 $\quad 9-2 a=3$

$$
-2 a=-6, \quad a=3
$$

- 20 \%

14 주차를 x 분 한다고 하면

$$
\begin{array}{cc}
2000+200(x-30) \leq 8000 & \bullet 40 \% \\
200 x \leq 12000, \quad x \leq 60 & \bullet 40 \% \\
\text { 따라서 최대 } 60 \text { 분까지 주차할 수 있다. } & \bullet 20 \%
\end{array}
$$

15 연립방정식 $\left\{\begin{array}{l}a x+b y=12 \\ b x-a y=11\end{array}\right.$ 의 해가 $x=2, y=-1$ 이므 로 $\quad\left\{\begin{array}{l}2 a-b=12 \\ 2 b+a=11\end{array}\right.$ - 40 \%

연립방정식을 풀면 $\quad a=7, b=2 \quad \bullet 40 \%$

$$
a+b=9
$$

- 20 \%

16 동석이의 속력을 시속 $x \mathrm{~km}$, 도은이의 속력을 시속 $y \mathrm{~km}$ 라고 하면

$$
\left\{\begin{array} { l }
{ \frac { 1 } { 4 } x + \frac { 1 } { 4 } y = 2 . 4 } \\
{ \frac { 2 } { 3 } x - \frac { 2 } { 3 } y = 2 . 4 }
\end{array} , \text { 즉 } \left\{\begin{array}{l}
5 x+5 y=48 \\
5 x-5 y=18
\end{array} \quad \bullet 40 \%\right.\right.
$$

연립방정식을 풀면 $\quad x=6.6, y=3 \quad \bullet 40 \%$ 따라서 동석이와 도은이의 속력은 각각 시속 6.6 km , 시속 3 km 이다.

창의-ㅇㅇㅇ합 프로젝트

 본문 98쪽과제 (1) 노새: 5 자루, 당나귀: 7 자루
과제 (2) 예 배송료가 2500 원인 인터넷 쇼핑몰에서 한 개에 1200 원인 초콜릿을 구입하려고 한다. 전체 금액이 20000 원을 넘지 않으려면 초콜릿은 최대 몇 개까지 구입할 수 있는지 구하시오.

일차함수와 그래프

준비학습

본문 102쪽
(1) $y=-3 x$,

\boldsymbol{x}	-3	1	2	3
\boldsymbol{y}	9	-3	-6	-9

(2)

1 함수

본문 103~105쪽
103쪽 탐구 * x 의 값이 변함에 따라 y 의 값은 하나씩 정 해진다.

문제 1
(1) 함수이다.
(2) 함수이다.
(3) 함수가 아니다.

문제 2
(1) -6
(2) 6
(3) -3

문제 3
(1) $f(x)=11 x \quad$ (2) 550

문제 4

확인 $1(1),(3)$
확인 2
(1) $f(x)=3 x$
(2) 21

일차함수와 그 그래프

본문 106~114쪽
106쪽 탇구 (1)

\boldsymbol{x}	$\overline{1}$	
\boldsymbol{y}	$\frac{2}{41000}$	$\frac{3}{42000}$

탐구 (2) $y=1000 x+40000$
문제1 (2), (3)
문제 2 (1) $y=5 x$, 일차함수이다.
(2) $y=x^{2}$, 일차함수가 아니다.
(3) $y=x+15$, 일차함수이다.

문제 3

문제 4
(1) 1
(2) 5
(3) -2

문제 5

109 쪽 적용하기 -3 만큼 평행이동한 직선이군.
110쪽 탐구(1) (가): $(2,0)$, (나): $(1,0)$, 두 점의 y 좌표는 모두 0 이다.
탐구 (2) (가): $(0,4)$, (나): $(0,-1)$, 두 점의 x 좌표 는 모두 0 이다.

문제6 (1) x 절편: $-1, y$ 절편: 2
(2) x 절편: $-3, y$ 절편: -2

문제 7 (1) x 절편: $3, y$ 절편: 6
(2) x 절편: $\frac{3}{4}, y$ 절편: -3
(3) x 절편: $-3, y$ 절편: 1
(4) x 절편: $-10, y$ 절편: -4

문제 8

112쪽
탐구 ** 초급자 코스: $\frac{1}{5}$, 중급자 코스: $\frac{3}{10}$
문제 9
(1) 3
(2) -2
(3) $\frac{1}{4}$
(4) $-\frac{5}{3}$

문제 10
(1) -2
(2) $\frac{3}{4}$

문제11

확인 1 (1) x 절편: $\frac{1}{2}, y$ 절편: -3 , 기울기: 6
(2) x 절편: $-4, y$ 절편: -6 , 기울기: $-\frac{3}{2}$

확인 2

사고력
32

수학 역량플러스 본문 115쪽

좔동 1
(1) [그림 2]의 도형의 넓이는 $10 \times 12 \times \frac{1}{2}=60$ [그림 3]의 도형의 넓이는

$$
10 \times 12 \times \frac{1}{2}-2=58
$$

[그림 1]의 여섯 개의 조각의 넓이의 합은

$$
7 \times 9-4=59
$$

따라서 [그림 2], [그림 3]의 넓이는 [그림 1]의 여 섯 개의 조각의 넓이의 합과 다르다.
(2) [그림 1]의 빨간 직각삼각형의 빗변의 기울기는 $\frac{7}{3}$ 이고, 파란 직각삼각형의 빗변의 기울기는 $\frac{5}{2}$ 이 다. 따라서 이 두 빗변을 연결한 선은 직선이 되 지 않으므로 [그림 2], [그림 3]의 바깥의 테두리를 이루는 도형은 이등변삼각형이 아니며, [그림 2], [그림 3]의 도형의 넓이는 모두 59이다.

활몽 2 (1)의 직사각형의 대각선의 기울기는 $\frac{11}{10}$ 이고, (2)의 모서리 부분에서 잘라 낸 직각삼각형의 빗변의 기울 기는 1 이다. 기울기가 서로 다르므로 (2), 3과 같은 활동을 할 수 없으며, 가로의 길이가 11 cm , 세로 의 길이가 10 cm 인 직사각형이 만들어지지 않는다.

일차함수의 그래프의 성질

본문 116~122쪽
116쪽 탐구(1) $y=3 x-1, y=\frac{1}{2} x+1$, 기울기가 모두 양수이다.
탐구(2) $y=-x+3, y=-2 x+2$, 기울기가 모두 음수이다.

문제1 (2), (3)
문제 2
(ㄷ), (ㄹ)
문제 3

118쪽 적용하기 지리산
119쪽 탈구 (1) 3
탐구 (2) 2
문제 4
(1) $y=2 x-1$
(2) $y=-5 x+3$

문제 5
(1) $y=-\frac{1}{2} x+1$
(2) $y=\frac{3}{2} x-2$

문제 6
(1) $y=\frac{1}{2} x+3$
(2) $y=-3 x-2$

문제 7
(1) $y=-\frac{2}{3} x+4$
(2) $y=-2 x+2$

문제 8
(1) $y=-8 x+500$
(2) 50 초

문제 9
(1) $y=5 x+20$
(2) $70{ }^{\circ} \mathrm{C}$
(3) 16 분

확인 1 오른쪽 위로 향하는 직선: (1), (4)
오른쪽 아래로 향하는 직선: (2), (3)

확인 2
(1) $y=-5 x+7$
(2) $y=2 x-1$

사고력 (1) (ㄷ)
(2) (L)
(3) (ㄱ)
(4) (ㄹ)

공학 도구 활용 본문 123쪽

달몽 $1 y$ 절편이 1 이다., a 의 절댓값이 커질수록 y 축에 가 까워진다.
활둉 2 기울기가 1 이다., b 의 절댓값이 커질수록 y 축과 만 나는 점이 원점에서 멀어진다.

중단원 마무리

(1) 함수, 함숫값
(2) 일차함수, b, x 절편, y 절편, y 의 값의 증가량, x 의 값의 증가량
(3) 위, 아래, 기울기, 기울기

01 답 (2)
$02 f(2)=2 \times 2-1=3$ 이므로 $\quad a=3$ $f(b)=-5$ 이므로 $\quad 2 b-1=-5, \quad b=-2$

$$
a+b=\mathbf{1}
$$

03 일차함수 $y=4 x+2$ 의 그래프를 y 축의 방향으로 m 만 큼 평행이동한 그래프의 식은

$$
y=4 x+2+m
$$

이 식이 $y=a x+7$ 과 같아야 하므로

$$
a=4,2+m=7
$$

따라서 $a=4, m=5$ 이므로 $\quad a+m=\mathbf{9}$
04 그래프의 y 절편이 -3 이므로 $y=-2 x-3$ 에서 $y=0$ 일 때 x 의 값을 구하면

$$
0=-2 x-3, \quad 2 x=-3, \quad x=-\frac{3}{2}
$$

따라서 x 절편은 $-\frac{3}{2}$ 이다.
05 (1) 일차함수 $y=a x+9$ 의 그래프에서

$$
a=\frac{-4}{7-(-1)}=-\frac{1}{2}
$$

(2) $\frac{(y \text { 의 값의 증가량) }}{6}=-\frac{1}{2}$ 이므로
$(y$ 의 값의 증가량 $)=-3$

- 50%

06 (ㄷ) 일차함수 $y=-\frac{4}{3} x+1$ 의 그래프는 제 1 사분면, 제 2 사분면, 제 4 사분면을 지난다.
이상에서 옳은 것은 (ㄱ), (ㄴ), (ㄹ)이다.
$07 a b<0, a-b>0$ 이므로 $\quad a>0, b<0$
따라서 일차함수 $y=a x+b$ 의 그래 프는 오른쪽 그림과 같이 제 1 사분 면, 제 3 사분면, 제 4 사분면을 지 난다.

08 두 점 $(-2,5),(1,-4)$ 를 지나는 직선의 기울기는

$$
\frac{-4-5}{1-(-2)}=-3 \quad \bullet 40 \%
$$

구하는 일차함수의 식을 $y=-3 x+b$ 라고 하면 이 일 차함수의 그래프가 점 $(-1,-2)$ 를 지나므로

$$
-2=3+b, \quad b=-5
$$

따라서 구하는 일차함수의 식은 $y=-3 x-5$ 이다.

09 일차함수 $y=a x+4$ 의 그래 프의 기울기 a 는 직선 (ㄱ)의 기 울기보다 작거나 같고 직선 (ㄴ) 의 기울기보다 크거나 같다. 이때 직선 (ㄱ)은 점 $\mathrm{A}(3,2)$ 를 지나므로

$$
2=3 a+4, \quad-3 a=2, \quad a=-\frac{2}{3}
$$

즉 직선 (ㄱ)의 기울기는 $-\frac{2}{3}$ 이다.
또 직선 (ㄴ)은 점 $\mathrm{B}(2,-2)$ 를 지나므로

$$
-2=2 a+4, \quad-2 a=6, \quad a=-3
$$

즉 직선 (ㄴ)의 기울기는 -3 이다.
따라서 구하는 a 의 값의 범위는 $-3 \leq a \leq-\frac{2}{3}$ 이다.

10 (1) 20 초 동안 물의 높이가 4 cm 만큼 줄어들었으므로 1 초에 물의 높이가 0.2 cm 씩 줄어든다. 이때 처음 물통에 들어 있는 물의 높이를 $b \mathrm{~cm}$ 라고 하면
$y=-0.2 x+b$ 로 놓을 수 있다.
이 식에 $x=30, y=62$ 를 대입하면

$$
62=-0.2 \times 30+b, \quad b=68
$$

따라서 구하는 식은 $y=-0.2 x+68$ 이다. $\quad 60 \%$
(2) $y=-0.2 x+68$ 에 $x=100$ 을 대입하면

$$
y=-0.2 \times 100+68=48
$$

따라서 물을 빼내기 시작한 지 1 분 40 초, 즉 100 초 후에 물통에 들어 있는 물의 높이는 48 cm 이다.

2 일차함수와 일차방정식의 관계

준비학습

(1)
(1), (3)
(2)
(1) $x=4, y=2$
(2) $x=9, y=3$

일차함수와 일차방정식

본문 128~131쪽

128쪽 단구(1)	x	\cdots	$\overline{-3}$	$\overline{-2}$
	y	\cdots	-1	$\frac{1}{-1}$

탐구(2)

문제 1

문제 2

문제 3
(1) $y=3$
(2) $x=-1$

131쪽 설명하기 예 직선 $x=p, y=q$ 는 방정식으로 나타 낼 수 있지만 일차함수의 식으로는 나타낼 수 없다.

확인 1

확인 $2 y=-5$

일차함수의 그래프와 연립일차방정식 본문 132~134쪽

132쪽 탐구(1) $(2,1)$ 탐구 (2) $(2,1)$ 탐구 (3) 같다.
문제1
(1) $x=-4, y=2$
(2) $x=1, y=-3$

문제 2
(1) $(-2,-7)$
(2) $(3,1)$

문제 3
(1) 해는 무수히 많다.
(2) 해는 없다.

134쪽 적용하기 $(3,1)$
확인 1
(1) $(-3,-2)$
(2) $(2,1)$

(수학 역량플러스

본문 135 쪽
할몽 1 (1) 상민: 시속 15 km , 수정: 시속 10 km
(2) 상민: $y=15 x$, 수정: $y=10 x$
(3) 자전거의 속력은 일차함수의 그래프의 기울기와 같다.
활몽 2 (1) 분속 60 m
(2)

(3) 15 분

중단원 마무리

(1) y 축, x 축, 직선의 방정식
(2) 교점, 하나, 없다, 무수히 많다

01 일차방정식 $a x-y+4=0$ 의 그래프가 점 $(-1,1)$ 을 지나므로 $\quad-a-1+4=0, \quad a=3$
일차방정식 $3 x-y+4=0$ 의 그래프가 점 $(2, b)$ 를 지 나므로 $\quad 6-b+4=0, \quad b=10$

$$
a+b=13
$$

$02 x-4 y-10=0$ 에서 $\quad y=\frac{1}{4} x-\frac{5}{2}$
따라서 $a=\frac{1}{4}, b=-\frac{5}{2}$ 이므로 $\quad 8 a b=-5$
$03 a x+y-a-b=0$ 에서 $\quad y=-a x+a+b$
주어진 그래프의 기울기가 $\frac{1}{2}$ 이므로 $\quad a=-\frac{1}{2}$

따라서 일차함수 $y=\frac{1}{2} x-\frac{1}{2}+b$ 의 그래프가 제 2 사 분면을 지나지 않아야 하므로

$$
-\frac{1}{2}+b \leq 0, \quad b \leq \frac{\mathbf{1}}{\mathbf{2}}
$$

04 (1) 두 점을 지나는 직선이 x 축에 수직이려면 두 점의 x 좌표가 같아야 하므로 $\quad a-3=3-2 a$

$$
3 a=6, \quad a=2
$$

- 50 \%
(2) 두 점 $(-1,3),(-1,2)$ 를 지나는 직선의 방정식 은 $\quad x=-1$
- 50 \%

05 주어진 직선의 방정식은 $\quad y=2$

$$
y-2=0, \quad-2 y+4=0
$$

따라서 $a=0, b=-2$ 이므로 $\quad a+b=-2$
06 두 일차방정식의 그래프의 교점의 y 좌표가 3 이므로 $x+y=5$ 에 $y=3$ 을 대입하면

$$
x+3=5, \quad x=2
$$

즉 주어진 연립방정식의 해는 $\quad x=2, y=3$
$x-a y=1$ 에 $x=2, y=3$ 을 대입하면

$$
2-3 a=1, \quad-3 a=-1, \quad a=\frac{\mathbf{1}}{\mathbf{3}}
$$

07 연립방정식 $\left\{\begin{array}{l}x-y+2=0 \\ 2 x+5 y+11=0\end{array}\right.$ 의 해는 $x=-3, y=-1$ 이므로 두 일차방정식 $x-y+2=0,2 x+5 y+11=0$ 의 그래프의 교점의 좌표는 $(-3,-1)$ 이다.
이때 구하는 직선의 방정식을 $y=a x-10$ 이라고 하면 이 직선이 점 $(-3,-1)$ 을 지나므로

$$
-1=-3 a-10, \quad 3 a=-9, \quad a=-3
$$

따라서 구하는 직선의 방정식은

$$
y=-3 x-10
$$

08 연립방정식 $\left\{\begin{array}{l}y=2 x+4 \\ y=-x+1\end{array}\right.$ 의 해는 $x=-1, y=2$ 이므로 두 일차함수 $y=2 x+4, y=-x+1$ 의 그래프의 교점 의 좌표는 $(-1,2)$ 이다.

- 30 \%

또 일차함수 $y=2 x+4$ 의 그래 프의 x 절편은 -2 , 일차함수 $y=-x+1$ 의 그래프의 x 절편 은 1 이다.

- 30%

따라서 구하는 도형의 넓이는

$$
\frac{1}{2} \times 3 \times 2=3 \quad \bullet 40 \%
$$

$09 a x+y=2$ 에서 $\quad y=-a x+2$
$x-b y=4$ 에서 $\quad y=\frac{1}{b} x-\frac{4}{b}$
두 일차함수의 그래프가 일치해야 하므로

$$
-a=\frac{1}{b}, 2=-\frac{4}{b}
$$

따라서 $a=\frac{1}{2}, b=-2$ 이므로 $\quad a b=-\mathbf{1}$
$10 a$ 가 양수이므로 주어진 네 직선은 오른쪽 그림과 같다. 이때 네 직선으로 둘러싸인 도형의 넓이가 18 이므로

$$
\begin{aligned}
& 4 a \times \frac{9}{2}=18 \\
& 18 a=18, \quad a=\mathbf{1}
\end{aligned}
$$

11 (i) 두 직선 $a x+y+4=0, x-y-3=0$ 이 평행한 경우 $a x+y+4=0$ 에서 $\quad y=-a x-4$
$x-y-3=0$ 에서 $\quad y=x-3$
두 직선이 평행하므로

$$
-a=1, \quad a=-\mathbf{1}
$$

(ii) 두 직선 $a x+y+4=0,3 x+y-5=0$ 이 평행한 경우 $3 x+y-5=0$ 에서 $\quad y=-3 x+5$
두 직선이 평행하므로

$$
-a=-3, \quad a=3
$$

(iii) 세 직선이 한 점에서 만나는 경우

연립방정식 $\left\{\begin{array}{l}x-y-3=0 \\ 3 x+y-5=0\end{array}\right.$ 의 해는 $x=2, y=-1$ 이므로 두 직선 $x-y-3=0,3 x+y-5=0$ 의 교 점의 좌표는 $(2,-1)$ 이다.
따라서 직선 $a x+y+4=0$ 이 점 $(2,-1)$ 을 지나 므로 $\quad 2 a-1+4=0$

$$
2 a=-3, \quad a=-\frac{3}{2}
$$

12 동생에 대한 직선을 그래프로 하는 일차함수의 식은

$$
y=3 x+120 \quad \cdots \cdots \cdot(\neg) \quad \bullet 30 \%
$$

형에 대한 직선을 그래프로 하는 일차함수의 식은

$$
y=5 x \quad \ldots \ldots \text { (ㄴ) } \quad \bullet 30 \%
$$

(ㄱ)과 (ㄴ)을 연립하여 풀면 $x=60, y=300$ 이므로 두 일 차함수의 그래프의 교점의 좌표는 $(60,300)$ 이다.

$$
\text { - } 30 \%
$$

따라서 두 사람이 출발한 지 60 초 후에 형이 동생을 앞 지르기 시작했다.

- 10 \%

대단원마무리 디

01 (1) $f(x)=40 x$
(2) $f(x)=40 x$ 에 $x=6$ 을 대입하면 $\quad f(6)=\mathbf{2 4 0}$

02 답 (2), (5)

03 일차함수 $y=3 x-2+k$ 의 그래프가 점 $(1,-4)$ 를 지 나므로

$$
-4=3-2+k, \quad k=-5
$$

04 답 (4)

05 직선 $l: y=2 x+6$
직선 $m: y=2 x+2$
따라서 $\mathrm{A}(0,6), \mathrm{B}(-3,0)$,
$\mathrm{C}(-1,0), \mathrm{D}(0,2)$ 이므로 색 칠한 부분의 넓이는

$$
\frac{1}{2} \times 3 \times 6-\frac{1}{2} \times 1 \times 2=8
$$

06 두 점 $(-1,6),(1,2)$ 를 지나는 직선의 기울기는

$$
\frac{2-6}{1-(-1)}=-2
$$

또 두 점 $(1,2),(4, a)$ 를 지나는 직선의 기울기도
-2 이므로 $\quad \frac{a-2}{4-1}=-2$

$$
a-2=-6, \quad a=-4
$$

07 일차함수 $y=a x+4$ 의 그래프가 주어진 직선과 평행하 므로

$$
a=\frac{2-0}{0-3}=-\frac{2}{3}
$$

따라서 $y=-\frac{2}{3} x+4$ 의 그래프의 x 절편은 6 이므로

$$
\begin{aligned}
& b=6 \\
& a+b=\frac{\mathbf{1 6}}{\mathbf{3}}
\end{aligned}
$$

08 일차함수 $y=-\frac{1}{4} x+1$ 의 그래프의 x 절편은 4 , 일차 함수 $y=\frac{3}{5} x-2$ 의 그래프의 y 절편은 -2 이므로 직선 의 기울기는 $\quad \frac{-2-0}{0-4}=\frac{1}{2}$
따라서 이 직선을 그래프로 하는 일차함수의 식은

$$
y=\frac{1}{2} x-2
$$

09 일차방정식 $2 x+b y+5=0$ 의 그래프가 점 $(-3,4)$ 를 지나므로 $\quad-6+4 b+5=0$

$$
4 b=1, \quad b=\frac{1}{4}
$$

$2 x+\frac{1}{4} y+5=0$ 에서 $\quad y=-8 x-20$ 따라서 이 그래프의 기울기는 -8 이다.
$10 a x-b y+1=0$ 에서 $\quad y=\frac{a}{b} x+\frac{1}{b}$
주어진 그래프에서 $($ 기울기 $)>0,(y$ 절편 $)<0$ 이므로

$$
\begin{equation*}
\frac{a}{b}>0, \frac{1}{b}<0, \quad a<0, b<0 \tag{5}
\end{equation*}
$$

11 연립방정식 $\left\{\begin{array}{l}y=2 x-2 \\ y=5 x+7\end{array}\right.$ 을 풀면 $x=-3, y=-8$ 이므 로 두 일차함수의 그래프의 교점의 좌표는 $(-3,-8)$ 이다.
따라서 구하는 직선의 방정식은 $\quad x=-3$
$12-2 x+y-2=0$ 에서 $\quad y=2 x+2$
$a x-3 y+1=0$ 에서 $\quad y=\frac{a}{3} x+\frac{1}{3}$
따라서 두 그래프가 평행해야 하므로

$$
2=\frac{a}{3}, \quad a=6
$$

$13 a=\frac{-9}{5-2}=-3$
따라서 일차함수 $y=-3 x+7$ 의 그래프가 점 $(-1, b)$ 를 지나므로 $\quad b=3+7=10$

$$
b-a=13
$$

- 20 \%

14 (1) 정오각형 1 개를 만드는 데 필요한 성냥개비는 5 개 이고, 정오각형이 1 개 늘어날 때마다 성냥개비는 4 개씩 늘어나므로 y 를 x 의 식으로 나타내면

$$
y=5+4(x-1), \quad y=4 x+1 \quad \bullet 50 \%
$$

(2) $x=15$ 를 $y=4 x+1$ 에 대입하면

$$
y=4 \times 15+1=61
$$

따라서 정오각형 15 개를 만드는 데 필요한 성냥개 비의 개수는 61 이다.

15 두 점 $(-1,8),(1,2)$ 를 지나는 직선의 기울기는

$$
\frac{2-8}{1-(-1)}=-3
$$

이고, 민우가 그린 직선의 방정식을 $y=-3 x+k$ 라고 하면 이 직선이 점 $(-1,8)$ 을 지나므로

$$
8=3+k, \quad k=5, \quad y=-3 x+5
$$

그런데 민우는 상수항을 정확하게 보았으므로

$$
b=5
$$

- 40 \%

또 두 점 $(-2,0),(-1,2)$ 를 지나는 직선의 기울기는

$$
\frac{2-0}{-1-(-2)}=2
$$

이고, 희수는 x 의 계수를 정확하게 보았으므로

$$
a=2
$$

따라서 일차함수 $y=2 x+5$ 의 그래프의 x 절편은 $-\frac{5}{2}$ 이다.

- 20 \%

16 사각형 ABCD 는 평행사변형이므로 두 직선 $y=-x+3, y=a x+b$ 는 서로 평행하다. 즉 $a=-1$

두 직선 $y=-x+b$ 와 $y=-1$ 의 교점의 좌표는

$$
\mathrm{C}(b+1,-1)
$$

두 직선 $y=-x+3$ 과 $y=-1$ 의 교점의 좌표는
$\mathrm{B}(4,-1)$
이때 사각형 ABCD 의 넓이가 18 이므로

$$
\begin{array}{ll}
\{(b+1)-4\} \times\{5-(-1)\}=18 & \\
b-3=3, \quad b=6 & \bullet 60 \% \\
a b=-6 & \\
\bullet 10 \%
\end{array}
$$

삼각형의 성질

준비학습

(1) (1) 85
(2) 55
(2) $\triangle \mathrm{ABC} \equiv \triangle \mathrm{GIH}$ (ASA 합동)

1 이든볌각형의 성질

본문 147~150쪽
147쪽 탐루(1) 이등변삼각형 탐루 (2) $\angle \mathrm{C}$
문제1
(1) 55
(2) 30

문제 2
(1) 3 cm
(2) 90°
(3) 66°

문제 3 65°
문제 4 (1) 7
(2) 4

문제 $5 \overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 이므로 $\quad \angle \mathrm{ABC}=\angle \mathrm{ACB}$
이때 $\angle \mathrm{DBC}=\frac{1}{2} \angle \mathrm{ABC}=\frac{1}{2} \angle \mathrm{ACB}=\angle \mathrm{DCB}$ 이므로 $\triangle \mathrm{DBC}$ 의 두 내각의 크기는 같다.
따라서 $\triangle \mathrm{DBC}$ 는 이등변삼각형이다.
문제 $6 \overline{\mathrm{AB}}$ 의 중점을 M 이라고 하면

$$
\overline{\mathrm{AM}}=\overline{\mathrm{BM}}, \angle \mathrm{PMA}=\angle \mathrm{PMB}=90^{\circ},
$$

$\overline{\mathrm{PM}}$ 은 공통
이므로 $\quad \triangle \mathrm{PAM} \equiv \triangle \mathrm{PBM}(\mathrm{SAS}$ 합동)
$\overline{\mathrm{PA}}=\overline{\mathrm{PB}}$
따라서 $\triangle \mathrm{PAB}$ 는 $\overline{\mathrm{PA}}=\overline{\mathrm{PB}}$ 인 이등변삼각형이다.
150 쪽 설명하기 $\triangle \mathrm{ADB}$ 에서 $\angle \mathrm{A}=70^{\circ}-35^{\circ}=35^{\circ}$
따라서 $\triangle \mathrm{ADB}$ 는 $\overline{\mathrm{AB}}=\overline{\mathrm{DB}}$ 인 이등변삼각형이므
로 강의 폭 AB 의 길이는 3 m 이다.
확인 1 (1) 40
(2) 6

확인 25 cm
사고력 예 (1)

(2)

직각삼각형

151쪽 탐구⑴ $\angle \mathrm{A}$ 와 $\angle \mathrm{D}$ 의 크기가 같다.
탐구(2) 한 변의 길이와 양 끝 각의 크기가 같으므 로 $\triangle \mathrm{ABC}$ 와 $\triangle \mathrm{DFE}$ 는 합동이다.

문제1 $\triangle \mathrm{ABC} \equiv \triangle \mathrm{HGI}$, 빗변의 길이와 다른 한 변의 길 이가 각각 같다.
$\triangle \mathrm{DEF} \equiv \triangle \mathrm{JLK}$, 빗변의 길이와 한 예각의 크기 가 각각 같다.

문제 $2 \triangle \mathrm{OPC}$ 와 $\triangle \mathrm{OPD}$ 에서

$$
\angle \mathrm{OCP}=\angle \mathrm{ODP}=90^{\circ},
$$

$\overline{\mathrm{OP}}$ 는 공통, $\angle \mathrm{COP}=\angle \mathrm{DOP}$
이므로 $\quad \triangle \mathrm{OPC} \equiv \triangle \mathrm{OPD}$
따라서 $\overline{\mathrm{PC}}=\overline{\mathrm{PD}}$ 이다.
문제 $3 \triangle \mathrm{MDB}$ 와 $\triangle \mathrm{MEC}$ 에서

$$
\angle \mathrm{MDB}=\angle \mathrm{MEC}=90^{\circ}
$$

$$
\overline{\mathrm{MB}}=\overline{\mathrm{MC}}, \overline{\mathrm{MD}}=\overline{\mathrm{ME}}
$$

이므로 $\quad \triangle \mathrm{MDB} \equiv \triangle \mathrm{MEC}$
따라서 $\angle \mathrm{MBD}=\angle \mathrm{MCE}$ 이므로 $\triangle \mathrm{ABC}$ 는 이등 변삼각형이다.

